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We consider coherent thermal conductance through multilayer photonic crystal heterostructures, consisting
of a series of cascaded nonidentical photonic crystals. We show that thermal conductance can be suppressed
exponentially with the number of cascaded crystals due to the mismatch between photonic bands of all crystals
in the heterostructure.
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Coherent thermal transport, using thermal channels with
length smaller than the mean-free path of the thermal carri-
ers, is important for fundamental study of thermal processes
and for new device opportunities in thermal management.1–11

In this Brief Report, we consider a coherent thermal channel
formed by cascading a series of nonidentical photonic crys-
tals. We show that its thermal conductance can be suppressed
exponentially with respect to the channel length l. This is
fundamentally different from the incoherent process, where
the conductance typically decreases as 1 / l.12 We therefore
demonstrate that coherent processes can be very effective in
suppressing thermal conductance. This result also indicates
that an aperiodic coherent thermal channel is qualitatively
different from all previously considered coherent thermal
channels1–10 including periodic multilayer photonic crystals
as we previously considered,9,10 where the intrinsic thermal
conductance of the channels were all independent of the
channel length l.

As a concrete implementation, we utilize the concept of
photonic crystal heterostructure,13–15 and consider multilayer
systems consisting of a total of N different photonic crystals,
as illustrated in Fig. 1�a�. All crystals consist of alternate
periodic layers of vacuum and dielectric. The use of vacuum
ensures that heat transfer is carried only by photons. The
dielectric can be silicon �n=nSi=3.42�. For photon frequen-
cies within the blackbody spectrum at room temperature, sili-
con has very little dispersion and dissipation, with typical
attenuation length exceeding millimeter.16 Consequently
photonic thermal transport should be coherent across the en-
tire structure.9,10

For the structure shown in Fig. 1�a�, we assume that all
crystals have the same period a. The mth crystal has a di-
electric layer thickness dsm and a vacuum layer thickness
dvm. At either ends of the structure, we have two semi-
infinite photonic crystals. In between these two ends, there
can be a series of crystals cascaded together, each having the
same number of periods NP and hence the same total thick-
ness. �Thus the length of the channel is proportional to
N−2.� We also assume that the two crystals at the ends are
maintained at temperatures of T and T+dT, respectively. The
three-dimensional �3D� thermal conductance per unit area is
then defined as G3D�T�=dQ�T� /dT, where dQ�T� is the heat
flux per unit area.

In such multilayer structures, each photon state is charac-
terized by three parameters: frequency �, wave number k� in
the direction parallel to the layers, and polarization �=s , p.
The s and p polarizations have electric and magnetic fields

parallel to the layers, respectively.17 Summing over all pho-
ton states, we have10

G3D�T� = �
�
� k�dk�

2�
G�T,k�,�� . �1�

Here

G�T,k�,�� = kB�
0

� d�

2�

���/�kBT��2e��/�kBT�

�e��/�kBT� − 1�2 ���,k�,�� �2�

is the thermal conductance of a one-dimensional thermal
channel of a given parallel wave number k� and polarization
�. kB is the Boltzmann constant and �=h / �2�� is the re-
duced Planck constant. The factor ��� ,k� ,�� measures the
contribution from photon states at �� ,k� ,��. For a single
crystal �i.e., N=1�, ��� ,k� ,��=1 if the frequency � lies in a
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FIG. 1. �a� A photonic crystal heterostructure with four crystals.
Each crystal has alternate silicon and vacuum layers, and a period a.
The two crystals at either ends are assumed to be infinite. �b� In the
top four panels, gray regions correspond to frequency ranges where
the corresponding crystal, assumed to be infinite, has a propagating
state along the normal incident direction. White regions are the
band gaps. ds is the thickness of the silicon layers. In the bottom
panel, the black regions represent frequency ranges where there are
photonic bands in all crystals.
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photonic band, and ��� ,k� ,��=0 if the frequency � lies in a
band gap region.10 For the heterostructure �Fig. 1�a��, where
there are at least two crystals �i.e., N	2�, ��� ,k� ,�� van-
ishes unless, at a given �� ,k� ,��, propagating eigenmodes
exist for the semi-infinite crystals at both ends. In such a
case, ��� ,k� ,�� is the power transmission coefficient
through the entire structure when an incident wave is one of
these eigenmodes, and can be determined using the transfer
matrix method.17 We will first consider the behaviors of one-
dimensional conductance at normal incidence, and suppress
the labels k� and �.

For any one-dimensional channel consisting of homoge-
neous dielectric material, ����=1 for all frequencies. Equa-
tion �2� then leads to the universal quantized thermal con-
ductance G0�T�=�kBT / �6��.1,2,4 For any one-dimensional
channel in general, we define its normalized thermal conduc-
tance as G�T� /G0�T�.

We now briefly review the property of thermal conduc-
tance suppression of a single photonic crystal at normal
incidence.10 The suppression is particularly effective at the
ergodic limit of kBTa / �hc�
1, where the thermal conduc-
tance has contribution from a large number of photonic
bands.10 In this limit, the statistical properties of the photonic

band structures as a whole, rather than the detailed properties
of individual bands, become important. From Eq. �2�, we
thus obtain

lim
T→�

G�T�
G0�T�

= lim
�→�

1

�
�

0

�

d����� � �, for N = 1. �3�

Here �
1 denotes the proportion of frequencies in the pho-
tonic bands. Using ergodic theory, we showed in Ref. 10 that
except for a zero-measure set of parameter choices, all crys-
tals satisfy

� =
1

�2�
0

�

d�	Re
cos−1− 2 + �� + 1�cos �

� − 1
�

− Re
cos−12 + �� + 1�cos �

� − 1
�� , �4�

where �=0.5�n+1 /n�. We emphasize that �, and hence the
ergodic limit of the normalized conductance, is independent
of the layer thicknesses in the unit cell.

In a heterostructure with N crystals �Fig. 1�a��, photonic
band gaps are located at different frequencies for different
crystals �Fig. 1�b��. To determine its thermal conductance in
the ergodic limit, we first assume that thermal transport oc-
curs only at frequencies that fall within the bands of all crys-
tals, and set ����=0 for all other frequencies. We then as-
sume that the frequency distributions of the photonic bands
between different crystals are independent. From these two
assumptions, the total proportion of frequencies that contrib-
utes to thermal conductance is then �N, with � given by Eq.
�4�. Finally, for each frequency � that does contribute, the
power transmission coefficient ���� is typically less than
unity, due to impedance mismatch between different crystals.
Combining all these considerations, we have

lim
T→�

G�T�
G0�T�

= lim
�→�

1

�
�

0

�

d����� 
 �N, for N 	 2. �5�

Equation �5� is the main result of this paper: the thermal
conductance of a heterostructure in the ergodic limit has an
upper bound �N that decreases exponentially with the num-
ber of crystals N. Moreover, such an upper bound is indepen-
dent of the detailed geometry such as layer thickness and
lattice constant but instead depends only on the refractive
indices of the layers.

We now support the theoretical analysis above with ex-
tensive numerical simulations. We first verify that the er-
godic limit indeed exists. In Fig. 2�a�, we plot the tempera-
ture dependence of G�T� /G0�T� for various heterostructures.
G�T� /G0�T� all decrease rapidly at small T and converge to
specific values when T
hc / �kBa�. These specific values:
limT→��G�T� /G0�T��, which we refer as the “high-T conduc-
tance,” define the ergodic limit for the conductance in a
given structure. Below, we will only consider conductance at
this ergodic limit.

In a heterostructure, except for the two crystals at the
ends, all intermediate crystals have a finite number of peri-
ods NP. At frequencies in the band gaps of any intermediate
crystal, photons can still transmit through the crystal, result-
ing in a nonzero ����. Such a finite-size effect, however,
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FIG. 2. �Color online� �a� Normalized one-dimensional thermal
conductance G�T� /G0�T� as a function of temperature T for hetero-
structures with different number of crystals N. For each N, different
curves represent structures of different thicknesses of silicon ds and
vacuum dv. The brown �dark gray� dashed curve shows a commen-
surate case of N=2, where ds1=0.7851a and ds2=0.2262a such that
nsids2 / �a−ds2�=1. �b� High-T conductance for heterostructures of
different number of periods NP at the intermediate crystals. Each
line corresponds to structures with the same number of crystals N.
3�N�8. Data points exist only at integer NP. �c� High-T conduc-
tance for a total of 15 000 heterostructures with randomly generated
thicknesses of silicon layers. 0.05a�ds�0.95a for all crystals.
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should be negligible if NP is sufficiently large. In Fig. 2�b�,
we consider heterostructures with different number of crys-
tals N. For each N, we vary NP. The high-T conductance all
converges when NP	10. Thus, with a choice of NP=10, all
intermediate crystals can essentially be treated as infinite,
and thus ����=0 unless at the frequency � there are photon
states in the band structures for all crystals, validating the
first assumption made in our analysis. Regarding the second
assumption, one can in fact prove that frequency distribu-
tions of photon states in different crystals are independent,
except for a zero-measure set of parameter choices, using an
analysis similar to Ref. 10.

Equation �5� predicts that an upper bound that is universal
in the sense that it is independent of layer thicknesses. Nu-
merical calculations establish an even stronger result. In Fig.
2�c�, we consider a total of 15 000 structures, with the num-
ber of crystals N between 2 and 4. In these structures, the
thickness of the dielectric layers is randomly generated. For
the vast majority of structures, the high-T conductance them-
selves have universal values that depend only on N and are
independent of the layer thicknesses. This numerical result
provides a strong support of our statistical analysis that leads
to Eq. �5�.

Examining Fig. 2�c�, we also see few cases for which the
high-T conductance of a structure deviates from the universal
values. �One of these cases is also shown in Fig. 2�a�.� Such
deviations occur if one of the crystals belongs to the com-
mensurate cases either as discussed in Ref. 10, or when pho-
tonic bands of two or more crystals become correlated with
each other. These cases, in the ergodic limit, form the zero-
measure set as discussed above. We will ignore these com-

mensurate cases hereafter since their occurrences require
control of layer thicknesses with high accuracy.10

We now provide a direct numerical confirmation of Eq.
�5�. In Fig. 3, we plot the high-T conductance of heterostruc-
tures with different number of crystals N. We consider only
the incommensurate cases where the high-T conductance
takes the universal values. The numerically determined
high-T conductance clearly falls below the exponentially de-
creasing bound as set by Eq. �5�.

For three-dimensional thermal conductance, using Eqs.
�1� and �2�, we have10

G3D�T� = �
�=s,p

�
0

n

udu�
0

�

d�
�2

4�2c2	kB
���/�kBT��2e��/�kBT�

�e��/�kBT� − 1�2 ���,u,��� , �6�

where u�k�c /�. At the ergodic limit, for each channel la-
beled by u, we repeat the same statistical arguments above to
obtain

lim
T→�
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= �
�=s,p

�
0

1

udu · lim
�→�
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�
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� �
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�
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1

���u,���Nudu . �7�

Here ��u ,�� is obtained by replacing � in Eq. �4� with
��u ,��=0.5�na / �nbP�+ �nbP� /na�, where na=
n2−u2, nb

=
1−u2, and P=1 and n2 for the s and p polarizations, re-
spectively.

In Eq. �7�, the equality holds only when N=1. Also, in
deriving Eq. �7�, we use the fact that in the ergodic limit, the
states with u�1, where photons are evanescent in the
vacuum layers, do not contribute.10 Hence the range of inte-
gration on u is between 0 and 1. Finally, Eq. �7� indicates a
universal upper bound that depends only on the index and
the number of crystals. Similar to the case of normal inci-

dence, numerical results �not shown here� further indicate
that 3D conductance themselves in the ergodic limit are in
fact universal.

We now confirm Eq. �7� with numerical results. For the s
polarization, the band gaps persist in the entire range of 0

u
1.9,10 Hence ��u ,�=s�
1. From Eq. �7�, the upper
bound on the high-T conductance for the s polarization there-
fore decreases exponentially with respect to the number of
crystals N, as supported by the numerical results in Fig. 4.
For the p polarization, uB=
n2 / �n2+1� corresponds to the
Brewster angle where the reflection at the vacuum-dielectric
interface vanishes.18,19 At u=uB there is no photonic band
gap at any frequency and ��uB,�= p�=1. As a result, the
high-T conductance from the p polarization, and hence the
total 3D high-T conductance, show more gradual decay with
respect to N �Fig. 4�.

In our structure, exponential reduction in 3D thermal con-
ductance can be accomplished using a simple angle filter that
blocks out thermal radiation with a large angle of incidence.
As a simple illustration, restricting the integration range of u
in Eq. �6� to 0�u�0.5 is sufficient to generate the exponen-
tial reduction �Fig. 4�. Alternatively, for heterostructures be-

0 2 4 6 8 10
10-4

10-3

10-2

10-1

100

number of crystals (N)

lim
[G
(T
)/G

0(T
)]

T
∞

FIG. 3. One-dimensional high-T conductance for photonic crys-
tal heterostructures as a function of number of crystals �N�. Data
points exist only at integer N. N=0 corresponds to vacuum. N=1
corresponds to an infinite crystal. N=2 corresponds to two semi-
infinite crystals placed together. For N	3, each intermediate crystal
has NP=10 number of periods. The solid line is the actual conduc-
tance. The dashed line is the corresponding theoretical upper bound
�N�exp�−�N� from Eq. �5�, where �=0.62.
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tween two semi-infinite vacuum regions, we can achieve ex-
ponential reduction using omnidirectional reflectors as the
intermediate crystals.18 Finally, Ref. 20 shows that the Brew-
ster angle can be made imaginary using films with large bi-
refringence. Multilayer structures consisting of such birefrin-
gent films and vacuum therefore could also be useful for
demonstrating exponential reduction in 3D thermal conduc-
tance.

We now briefly comment on the experimental feasibility
in demonstrating our predictions. Multilayer structures can
be fabricated by a variety of techniques.18,20 Our theory calls
for a measurement of the photonic thermal conductance in
these structures. For this purpose we notice the exciting re-
cent experimental developments in measuring photonic ther-
mal conductance.21,22 Here, one can consider a set up similar

to Refs. 21 and 22, where thermal contacts are made to the
ends of the structure, and thermal conductance is measured
by recording the amount of power transferred. Our results
may also be practically significant for ultimate thermal insu-
lation. Currently, an effective mechanism for thermal insula-
tion utilizes multiple layers of metal and vacuum.23,24 In such
a structure, thermal transfer is incoherent. Its thermal con-
ductance scales as 1 /NM, where NM is the number of metal
layers.23,24 Our results here indicate a qualitatively different
mechanism for achieving thermal insulation using dielectric
systems, which may present new opportunities. For example,
the structure in Fig. 1 allows high transmission through nar-
row band of frequencies, which may be important for com-
munication through such a thermally insulating medium.

We end by highlighting closely related works. The con-
cept of using a single phononic crystal structure to suppress
coherent phononic thermal conductance was discussed in
Ref. 25, and was extended to the photonic case in Refs. 9 and
10. In these structures, the thermal conductance is indepen-
dent of the channel length. Meanwhile, mismatch between
two different phononic band structures had been used to
achieve very small interfacial thermal conductance.26,27 Our
result, showing exponential suppression of thermal conduc-
tance using a large number of crystals, is a step further and
points to a new regime of coherent thermal transport. While
we have considered photonic thermal transport, the general
concept in this paper may be applicable to other thermal
carriers as well provided that the coherent effect is signifi-
cant. Finally, in analogy to electron transport, where an ex-
ponential reduction in electronic conductance with respect to
distance is a direct signature of electron localization, our
result indicates an intriguing notion that heat can be localized
as well.
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FIG. 4. �Color online� 3D high-T thermal conductance versus
number of crystals �N� in the structures. Data points exist only at
integer N. The thick black lines are the total conductance. The thick
green �gray� lines are the total conductance with an angle filter. The
thin dark blue �dark gray� and the thin red �light gray� lines are
contributions from the s and p polarizations, respectively. The solid
lines are direct numerical calculations of the thermal conductance.
The dashed lines are the theoretical upper bounds from Eq. �7�. For
N	3, each intermediate crystal has NP=10 number of periods.
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